Generalized Lie bialgebras and Jacobi structures on Lie groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Lie Bialgebras and Jacobi Structures on Lie Groups

We study generalized Lie bialgebroids over a single point, that is, generalized Lie bialgebras. Lie bialgebras are examples of generalized Lie bialgebras. Moreover, we prove that the last ones can be considered as the infinitesimal invariants of Lie groups endowed with a certain type of Jacobi structures. We also propose a method to obtain generalized Lie bialgebras. It is a generalization of t...

متن کامل

Generalized Lie Bialgebroids and Jacobi Structures

The notion of a generalized Lie bialgebroid (a generalization of the notion of a Lie bialgebroid) is introduced in such a way that a Jacobi manifold has associated a canonical generalized Lie bialgebroid. As a kind of converse, we prove that a Jacobi structure can be defined on the base space of a generalized Lie bialgebroid. We also show that it is possible to construct a Lie bialgebroid from ...

متن کامل

Lie Bialgebras of Complex Type and Associated Poisson Lie Groups

In this work we study a particular class of Lie bialgebras arising from Hermitian structures on Lie algebras such that the metric is ad-invariant. We will refer to them as Lie bialgebras of complex type. These give rise to Poisson Lie groups G whose corresponding duals G∗ are complex Lie groups. We also prove that a Hermitian structure on g with ad-invariant metric induces a structure of the sa...

متن کامل

Schrödinger Lie bialgebras and their Poisson – Lie groups

All Lie bialgebra structures for the (1+ 1)-dimensional centrally extended Schrödinger algebra are explicitly derived and proved to be of the coboundary type. Therefore, since all of them come from a classical r-matrix, the complete family of Schrödinger Poisson–Lie groups can be deduced by means of the Sklyanin bracket. All possible embeddings of the harmonic oscillator, extended Galilei and g...

متن کامل

geometrical categories of generalized lie groups and lie group-groupoids

in this paper we construct the category of coverings of fundamental generalized lie group-groupoid associatedwith a connected generalized lie group. we show that this category is equivalent to the category of coverings of aconnected generalized lie group. in addition, we prove the category of coverings of generalized lie groupgroupoidand the category of actions of this generalized lie group-gro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2003

ISSN: 0021-2172,1565-8511

DOI: 10.1007/bf02773071